

Development of R-Cubed Manipulation Language
 The design of an RCML 2.0 system

Dairoku Sekiguchi, Wei-Chung Teng, Yasuyuki Yanagida, Naoki Kawakami, and
Susumu Tachi

School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN

{dairoku, waldo, yanagida, kawakami, tachi}@star.t.u-tokyo.ac.jp

Abstract
The concept of R-Cubed (Real-time Remote Robotics:
R3) aims to provide a way to telexist anywhere in the
world by controlling remote robots over the network.
RCML (R-Cubed Manipulation Language) is considered
to be a language for describing the interface for
controlling remote robots in an R-Cubed concept.
RCML 1.0 is an extension of VRML97 and uses a
PROTO node, which is an extension node of VRML97.
Through the experimental implementation of an RCML
1.0 system, two design problems were revealed. One is a
limitation on implementation, and the other is a
separation of user interface and control information
definition. To overcome these problems, we designed a
new version of the RCML system. This paper proposes a
new design of the RCML system called RCML 2.0. In
RCML 2.0, we introduced a language RXID 2.0 for
defining Graphical User Interface (GUI), which is used
for controlling the remote robot into the system. Both
RCML 2.0 and RXID 2.0 are XML- based languages.
By using XML, expandability and flexibility in
implementation are introduced to the RCML system.
RXID 2.0 has mechanism for a one-way link to an
RCML data structure, and this mechanism provides for
the complete separation of the control of the robot and
the user interface. We also show the reference
implementation of the RCML 2.0 system.

Key words: R-Cubed, RCML, RCTP, RXID, XML

1. Introduction
R-Cubed (Real-time Remote Robotics: R3)[1] is a
concept that enables a user to telexist anywhere in the
world with a sensation of actually being there. This is
accomplished by controlling remote robots over the
network. Users of an R-Cubed system feel and act as if
they really existed in a remote environment, regardless
of the physical limitations of time and space [2].

RCML (R-Cubed Manipulation Language) is considered
to be a bottom-up approach of the R-Cubed concept.
The design of an RCML system utilizes existing
infrastructures and devices such as the Internet and PC
and, users of the system will be able to use it easily and

intuitively. In a manner similar to the way a VRML
browser provides a standard method for accessing the
virtual world, we intend to provide a standard method
for accessing the remote real environment with an
RCML system.

2. Related Work
Recently, network robotics is active research area. Many
implementation methods have been examined. The
simplest implementation is the combination of CGI and
HTML [3]. A CGI and HTML based system generates a
new web page whenever a user requests a command to a
robot. Hence this implementation does not allow a user
to control a robot continuously and is not suitable for a
system such as RCML that requires continuous control
of a remote robot.

An implementation that uses web browser and Java
applet [4] is widely used method [5][6][7]. By using
Java applet, a user can control a remote robot without
installing any special software and, continuous control of
a remote robot is achieved at the same time. However it
is difficult to build a system such as a high end RCML
system that requires real-time processing, because Java
has limitation on its performance.

To become more general and sophisticated method for
controlling a remote robot, an approach that uses an
ORB (Object Request Broker), such as CORBA [8] and
DCOM [9], has been also examined. Hirukawa et al.
[10] use CORBA to implement their teleoperation
system. ORiN [11] that is developed by JARA (Japan
Robot Association) [12] uses DCOM. These ORB are
mechanism for handling distributed objects and do not
define interfaces between each object. Hence it is
necessary to define a standard method (API) that can
adapt to various robots, but it is very difficult to define
such general interface in advance of actual system
implementation. Until now several implementations that
use an ORB have been proposed, but a standard method
for controlling a remote robot is not established yet.

3. Previous Implementation
As previously stated, our goal is to provide a standard
method to access the real world. Our first step toward

this goal was to design the first RCML system called
RCML 1.0 in 1997 [13]. RCML 1.0 consists of RCML
1.0 and RCTP/1.0. RCML 1.0 is a description language
for controlling a remote robot, and RCTP/1.0 is an
HTTP/1.1-based protocol for transferring control data.
The design of RCML 1.0 is based on VRML97 [14]. By
adding a method to describe the real world to VRML97,
we aimed to merge access to the real world and access to
the virtual world seamlessly. To maintain upper-
compatibility with VRML97, RCML 1.0 uses a PROTO
node, which is an extension node of VRML97. By
retaining upper-compatibility with VRML97, we can
make good use of the existing VRML browser to
develop a client program (RCML browser).
Furthermore, users who only have a VRML browser will
still be able to access an RCML 1.0 file and browse the
virtual worlds.

We also developed an experimental implementation to
examine and verify the design of the RCML 1.0 system
and demonstrated the remote control of the
omnidirectional mobile robot [15][16]. Compared to
approaches using CGI and HTTP, our system has a short
response time that enables us to control the remote robot
in a continuous operation and not in a one-by-one
command-based operation. In addition, by combining a
VRML view, the seamless integration of the two access
methods to the virtual and real worlds and intuitive
operation were achieved.

However, some design problems within the RCML 1.0
system were revealed at the same time.

The first problem is limitation on implementation.
Because the design of RCML 1.0 is an extension of
VRML97, it is most efficient to implement the client
side program by extending the existing VRML browser.
Hence, the development of a client program will always
be restricted by limitations of the VRML browser. For
instance, there is no choice other than Java to extend the
VRML browser, and Java is not a very suitable
development environment for a system such as RCML
that requires real-time processing.

The second problem is the necessity for the separation of
the user interface and the control information definitions.
In RCML 1.0, user interface definition such as choice of
input GUI and the control information definition such as
definition of value are mixed and described in one file.
Since control information is specific to each robot, once
it is written, it will not be modified so frequently.
However, user interface is sometimes modified more
frequently than control information. Because various
configurations of user interface can be considered, two
or more user interfaces may be prepared for one robot.
In fact, our RCML 1.0 experimental system has several
user interfaces, and each user interface has a different
type of input interface, such as a scroll bar and a button.
When several user interfaces are prepared for one robot
in the RCML 1.0 design, the same control information

will exist simultaneously in each file. Such a situation is
inefficient and difficult for file management. Hence, it is
important to separate user interface definition and
control information.

4. The Design of the RCML 2.0 System
We tried to make the design of the new RCML 2.0
system as simple as possible. To simplify the system, a
target robot is described as a set of variables that are
necessary for controlling a robot, and the control of the
target robot is considered to be equivalent to accessing
variables. The following figure shows a simple example
by two degrees of freedom with a pan/tilt camera.

θ1

θ2

θ1
θ2

Control
Access

Fig. 1 An example by pan/tilt camera

In the example above, there are two variables that
correspond to each pan/tilt axis, and the camera is
controlled by accessing these two variables. At this
point, we show a very simple example that has only two
variables. When we have to handle more variables, it is
better to manage variables in a tree structure than in a
flat structure. Thus, the RCML 2.0 system manages
variables in a tree structure, and this tree structure is
called an RCML data structure.

In the RCML 2.0 system, RCML 2.0 is a language for
describing an RCML data structure. As described in the
previous section, RCML 1.0 inherits not only the
advantage of VRML 97 but also the disadvantage of
VRML 97. Hence, we decided to base the design of the
RCML 2.0 on Extensible Markup Language (XML)
[17]. By using XML, the following advantages are
introduced into RCML:

�� Expandability
�� Clear syntax
�� Flexibility in implementation

In the RCML 2.0 system, RCTP/2.0 defines a method
for accessing the RCML data structure via a network.
Upon defining the specification of RCTP/2.0, we
considered the following things:

�� Ease of implementation
�� Expandable design
�� Providing the mechanism for real-time control by

minimizing the overhead of a data stream

We used the syntax and the sequence of the well-known
HTTP/1.1, instead of creating a new protocol entirely,
thus making it more understandable. Moreover, because
RCTP/2.0 is based on HTTP/1.1, the user can learn it
easily, and expandable design is also satisfied because it
uses the expansion mechanism of HTTP/1.1. In order to
minimize the overhead, we designed a special format for
the data stream. RCTP/2.0 also has a mechanism for
real-time control by synchronizing time between a server
and a client.

We introduced a language for defining GUI, which is
used for controlling the remote robot into the system.
This language is called RXID (RCML Extensible
Interface Definition) 2.0. RXID 2.0 supports well-known
common GUI elements such as window, scroll bar,
button, and text input and can define property for each
element, such as position, size, and caption. Hence, a
user can easily design various kinds of user interfaces
for controlling the remote robot. RXID 2.0 is also an
XML-based language and has mechanism for a one-way
link to an RCML data structure, which is illustrated in
the following section.

RCML data structure GUI by RXID file

One-way link

Fig. 2 One-way link in RXID 2.0

This one-way link defines the relationship between a
GUI element described in an RXID file and a variable in
an RCML data structure defined by an RCML file. By
linking these two elements, the input from the GUI side
is transferred to an RCML data structure, and the change
of variables in the RCML data structure is transferred to
the GUI side. Thus, a user can control remote robots by
GUI and know the status of the remote robot. Because
RXID 2.0's one-way link starts from the RXID file side,
it is not necessary to modify the RCML file when
describing the RXID file. This provides for the complete
separation of the control of the robot and user interface.
Hence, multiple user interfaces for one RCML file (Fig.
3) can be defined. Or, one integrated user interface for
multiple RCML files (Fig. 4) can be defined.

SERVER

ROBOT RCML

CLIENT

A

CLIENT CLIENT

B C

A B CRXID

Fig. 3 Multiple interfaces for one robot

SERVER

RCML

CLIENT

RXID

SERVER

ROBOT

SERVER

 Fig. 4 One user interface for multiple robots

5. Outline of the RCML 2.0 system
The next diagram shows an outline of the RCML 2.0
system.

Robot

RCML Browser

RCML Server

RCML File

RCML Client

Network RCTP
HTTP

RXID File

Fig. 5 An outline of the RCML 2.0 system

The RCML 2.0 system consists of an RCML server and
an RCML client. A robot is connected to an RCML
server. Each RCML server has an RCML 2.0 file, which
contains the information of the robot connected to the
server and an RXID 2.0 file, which defines the user
interface for controlling the robot. An RCML client
program specially designed for controlling a remote
robot by a human operator is called an RCML browser.
An RCML browser downloads the RCML 2.0 file and
the RXID 2.0 file by using a standard protocol such as
HTTP. An RCML browser then displays a GUI panel
based on the RXID 2.0 file and connects to the server
using RCTP/2.0 based on the information described in
the RCML 2.0 file. Once an RCTP/2.0 connection is

established, a user can freely control the remote robot
with the RCML browser.

6. RCML 2.0
The specification of RCML 2.0 is very simple. RCML
2.0 has only six nodes as follows:

Table 1. Elements of RCML 2.0
Elements Explanation

<rcml>
The root element of RCML. This element is
used to describe the information about an
RCML site.

<group> This element declares a group of data.

<access> This element declares a method to access
the <data> node.

<data> This element declares the <data> node in an
RCML data structure.

<link> This element declares a link for its parent
element.

<meta> This element declares a metadata for its
parent element.

In the above list, four elements from <rcml> to <data>
elements are used to describe the RCML data structure.
The <link> and <meta> elements are elements for
describing additional information (metadata) for a data
node.

- /

control

stream

tilt

zoom

focus

pan

The <rcml> node

The <group> node

The <access> node

The <data> node

1

Fig. 6 RCML data structure by sample RCML (Listed in
Appendix A)

In an RCML data structure, to indicate a specific node
path expression that can be commonly seen at file
system is used. For instance, the path to the <data> node
located at (1) in Fig. 6 is described as follows:

/stream/control/pan

In an RCML data structure, the name of a node must
satisfy the following rules:

�� The same rule that is defined as "Name" in an
XML syntax applies to a node name.

�� Nodes in the same level must have different names.
�� The order of nodes does not have a specific

meaning, unlike an XML document.

7. RCTP/2.0
RCML 2.0 only defines interface for controlling remote
robots. Hence, to make an actual system, some sort of
communication method is required. RCTP/2.0 is used as
a communication method in the system. RCTP/2.0
defines the protocol for reading and writing data that are
described by RCML 2.0. RCTP/2.0 has the following
functions:

�� Access for data - read and write
�� Controls of access privilege

7.1 Access methods in RCTP/2.0
RCTP/2.0 has some data access methods. In RCML 2.0,
these access methods can be specified for each <data>
node. Each access method is briefly described in the
next section.

7.1.1 Normal access
When no access type is specified in an RCML file, the
normal access method is used. The normal access
method uses connection-oriented connection. An access
occurs to each <data> node. This is the simplest access
method.

7. 1.2 Event-type access
When an event-type access method is specified in an
RCML file, this access method is used. The same as a
normal access method, an event-type access method uses
connection-oriented connection. The difference from the
normal method is simultaneous access for set of data and
the occurrence of a “data change event” from a server. It
places the importance of the assurance of changing
variables between a server and a client. So, an event-
type access is suitable to set the parameter for the robots
or to send a sequence of commands.

7.1.3 Stream-type access
When a stream-type access methods are specified in an
RCML file, this access method is used. Different from
other methods, a stream-type access uses a connection-
less data stream. By sending data as a stream, a stream-
type access can change data continuously. To send the
newest data without delay, a lost packet is not sent again
in a stream-type access. A stream-type access attaches
more importance to real-time access of data than event-
type access. So, when a bandwidth of network is very
broad and time delay is short, it is very useful.

7.2 Connections of RCTP/2.0
RCTP/2.0 defines two types of connections: control and
data stream.

RCML Client RCML Server
Control connection

Data stream

Access Control
Stream Control

Stream
Send and Receive

Resource Request
Stream Control

Stream
Send and Receive

Fig. 7 Connections of RCTP/2.0

Control connection mainly obtains access control and
controls data stream. Control connection uses a
connection-oriented method. A client establishes a
control connection to a server. A session is a period
starting when the client establishes a control connection
and ending with disconnection. Normal access and
event-type access use control connection.

On the other hand, data stream continuously transfers the
control data that is needed to control remote robots. Data
stream is used to transfer control data for the robot that
requires real-time control. Thus, it uses a connection-less
method that does not handle the re-transmission of
packets. A stream-type access uses this data stream.

7.2.1 Control connection
As in HTTP/1.1, control connection is a protocol based
on a request and response pair. The structure of the
message is also the same, where a start-line includes a
method and an RCTP version in a request, and it
includes a status code and a Reason-Phrase in a
response. A message header follows the status line and
the message body comes in last. RCTP/2.0 defines the
following 10 methods:

Table 2. Methods of RCTP/2.0
Method name Explanation C����S C����S

CONNECT Starts an RCTP session � �

ACQUIRE Acquires an access permission � �

RELEASE Releases an access permission
that was obtained � �

READ Obtains the value of <data>
node � �

WRITE Sets the value of <data> node � �

SETUP Sets the parameters for access
method � �

GO Instructs the beginning of access � �

PAUSE Instructs the pause of access � �

STOP Instructs the end of access � �

BYE Ends the session � �

RCTP/2.0 allows a server to issue a request on a client in
the method WRITE, STOP, and BYE, which is quite
different from HTTP/1.1. In the above table, C�S
represents the request from a client to a server while
C�S represents the request from a server to a client.

7.2.2 Data stream
Data stream uses a connection-less method that uses
packets to communicate. HTTP/1.1 does not have data
stream connection. Data stream is used for stream-type
access. To ensure real-time communication, it does not
re-transmit data when packets are lost. A data stream
packet can include several “payloads,” which are the
minimum units of data transmission. By making several
payloads that are generated at the same time into one
packet, it is possible to decrease the number of packets
in a data stream. A payload also has a field that shows
the type of information it contains. Thus, it is possible to
overlap several types of information in one data stream.
When transmitting real data in a data stream, a binary
format is used as in READ and WRITE methods in
control connection.

In addition to data-stream payload for real data
transmission, RCTP/2.0 also defines flow-control
payload. The protocol for flow control is very simple: a
request for operation and the acknowledgement of the
request and the negative acknowledgement. Operation
provides heartbeat operation for synchronizing local
time and reading and setting operation of flow-control
parameters. As flow-control parameters, RCTP/2.0
defines the transmission interval of payloads and the
timeout value of receiving payloads.

7.3 Two aspects of RCTP/2.0
The control of a data stream and the management of the
right to control the robot must take place at the same
time. Because, when controlling remote robots, to give
permission for sending and receiving a data stream for a
client is equivalent to giving the right to control the
robot to the client. Thus, it is inefficient and complicated
to implement when they are managed by different
protocols. Therefore, RCTP/2.0 has two aspects:
management of server resources and transmission and
control of a data stream.

8. RXID 2.0
RXID 2.0 defines the following elements:

Table 3. Elements of RXID 2.0
Name Explanation
<rxid> The root element of RXID.

<window>
This element creates a window. A window
can be used as a placeholder for all other
RXID widgets.

<session > This element declares an RCTP session.

<access> This element declares an access method to
data nodes in an RCML data structure.

widget
elements

This kind of element creates user interface
elements (RXID widgets).

The <window> element is always the child element of
the <rxid> root element. One <window> element
corresponds to one window displayed by the RCML

browser. Attributes of the <window> element represent
the property of a window such as position, size, title, and
background image. Each <window> element must have
at least one <session> element to specify the URL of a
target RCML file. The <access> element can be used to
declare the access method to the specific node in an
RCML file. The <window> element also has widget
elements as child elements. Widget elements are used to
place various user interface elements (RXID widgets)
inside the window. The current version of an RCML
browser supports the following widget elements:

Table 4. Currently supported widget elements
Name Explanation R W

<box> This element creates a box. � �

<label> This element creates a label. A label
is used to display static text. � �

<text>
This element creates a text. A text is
used to show values that can be
updated in real time.

� �

<button> This element creates a button. � �

<checkbox> This element creates a checkbox. � �

<radioGroup> This element creates a group of
radio buttons. � �

<scroll> This element creates a scroll bar. � �

<slider> This element creates a slider. � �

<edit> This element creates an edit box. � �

<popUpMenu> This element creates a pop-up menu. � �

<netmeeting> This element creates a live video
viewer component (NetMeeting). � �

<html> This element creates an html viewer
component. � �

<actionButton> This element creates an action
button. � �

In the list above, ‘R’ indicates that the widget can read
data from an RCML data structure. For instance, the
<slider> element reads a current position of the slider
knob from an RCML data structure and updates the
position of the slider knob. On the other hand, ‘W’
indicates that the widget can write data to an RCML data
structure. The element, which supports ‘write’ action,
such as a button, checkbox, and scroll, can write the
change of value inputted from a user to an RCML data
structure. There are also elements that support neither
read nor write action. Boxes and labels, for example,
represent static widgets and are not related to an RCML
data structure.

The widget that can do read or write action has a
“dataPath” attribute to declare a one-way link to an
RCML data structure. Here is brief example of a scroll
bar:

<scroll dataPath="/stream/control/pan" … />

The scroll bar above is linked to the node specified by
“/stream/control/pan” in the RCML data structure (Fig. 6
(1)).

9. Reference System
We also implemented an actual system based on the
design of RCML 2.0. The main purpose of this system is
to show the reference implementation of the RCML 2.0
system. Hence, we tried to fullfill the specifications of an
RCML 2.0 system as much as possible, and we also tried
to keep the system simple and easy to understand and to
extend.

The target platform of our system is Windows (Windows
98, NT 4.0, 2000) and Unix (FreeBSD, LINUX, etc.).
Currently, the RCML client supports Windows platforms
only. The main development language is C++, and
“XML for C++ (Version 2.3.1)” [18] is used as an XML
processor.

RCML
Client

Robot
Driver

Main
Process

チャイルド

プロセス

チャイルド

プロセス

Child
Process

Robot
Driver

RCML Server

RCML
Client

Fig. 8 Processes in RCML 2.0 system

The RCML server consists of the main process, the child
processes, which handle each session to an RCML
client, and the robot driver processes, which handle each
robot. The RCML client is one independent application
and connects to the desired RCML server by typing
URL as would be done in an ordinal web browser.

The following image is the screen-shot of the RCML
client:

Fig. 9 The screen-shot of the RCML client

10. Conclusion
In this paper, we showed a new design for an RCML
system (RCML 2.0) [19]. By using XML in the system
design, the new design provides expandability and
flexibility to the RCML system. In RCML 2.0, a

language RXID 2.0, which is used for defining user
interface, is introduced. By introducing RXID 2.0 into
the system, complete separation of the control of the
robot and user interface is achieved. We also developed
the reference implementation of RCML 2.0 system. Our
reference implementation fulfills almost all the
specifications defined by the specifications of the RCML
2.0 system.

References
1. MITI of Japan, R-Cubed WG ed.: “R-Cubed”,

Nikkan Kogyo Shinbun, (1996).

2. S. Tachi: “Real-time Remote Robotics – Toward
Networked Telexistence”, IEEE Computer Graphics
and Applications, pp. 6-9, (1998).

3. R. Simmons: “Xavier: An Autonomous Mobile
Robot on The Web”, Preprints IROS’98 Workshop
‘Robots on the Web’, pp. 43-47, (1998).

4. http://java.sun.com

5. M. R. Stein: “Painting on the World Wide Web:
The PumaPaint Project”, Preprints IROS’98
Workshop ‘Robots on the Web’, pp. 37-42, (1998).

6. Roland Siegwart, et al.: “Guiding Mobile Robots
through the Web”, Preprints IROS’98 Workshop
‘Robots on the Web’, pp. 1-6, (1998).

7. P. Saucy, F. Mondada: “KhepOnTheWeb: One
Year of Access to a Mobile Robot on the Internet”,
Preprints IROS’98 Workshop ‘Robots on the Web’,
pp. 23-29, (1998).

8. http://www.omg.org

9. http://www.microsoft.com

10. H. Hirukawa and I. Hara: “The Web Top Robotics”,
Preprints IROS’98 Workshop ‘Robots on the Web’,
pp. 49-54, (1998).

11. Mizukawa,M., Matsuka,H., Koyama,T.,
Matsumoto,A.: “De-facto standard API for Open and
Networked Industrial Robots”, Proc. 30th Int. Symp.
on Robotics, pp.455-462, Oct. 1999

12. http://www.jade.dti.ne.jp/~jara/

13. Y. Yanagida, N. Kawakami, S. Tachi:
“Development of R-Cubed Manipulation Language -
Access Real Worlds Over the Network”, Proc. of the
7th International Conference on Artificial Reality
and Tele-existence, pp159-167, 1997

14. http://www.web3d.org

15. W. C. Teng, A. Nukuzuma, N. Kawakami, Y.
Yanagida, S. Tachi: “Development of R-Cubed
Manipulation Language -The specification of RCML
and RCTP-”, Proc. of the 8th International

Conference on Artificial Reality and Tele-existence,
pp152-162, 1998

16. W. C. Teng, D. Sekiguchi, A. Nukuzuma, N.
Kawakami, Y. Yanagida, S. Tachi: “Development of
R-Cubed Manipulation Language –Implementation
and Evaluation of RCML System-”, Proc. of the 9th
International Conference on Artificial Reality and
Tele-existence, pp79-83, 1999

17. http://www.w3c.org

18. http://alphaworks.ibm.com/

19. http://www.rcml.org

Appendix A: RCML 2.0 Sample
<?xml version="1.0" encoding="Shift_JIS"?>
<!DOCTYPE rcml SYSTEM "rcml.dtd">

<!-- RCML Version 2.0 sample -->

<rcml
version="2.0"
site="rctp://rrr.rcml.org"
timeSource="GPS"
timePrecision="1E-4"
title="RCML sample"
author="D.Sekiguchi"
info="RCML test site."
contact="mailto:dairoku@rcml.org"

>

<group name="stream" permission="rw">
<access name="control"

type="stream"readInterval="16e-3"
writeInterval="16e-3"
readTimeout="10"
writeTimeout="10">

<data name="pan" type="int"/>
<data name="tilt" type="int"/>
<data name="zoom" type="int"/>
<data name="focus" type="int"/>

</access>
</group>

<link kind="UserInterface"
href="sample.rxid">

</rcml>

