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ABSTRACT

This paper describes a method of controlling the position of a manipulator with
passive joints. The passive joints have holding brakes instead of actuators. While the
brakes are released, the passive joints are indirectly controlled by the motion of the
active joints using the coupling characteristics of manipulator dynamics. While the
brakes are engaged, the active joints are controlled. This paper describes the basic
principle and the conditions that ensure the controllability of the passive joints.
An algorithm for PTP control is also presented. The feasibility of the method is
demonstrated by computer simulation.

1. INTRODUCTION

The number of degrees of freedom that a manipulator possesses is commonly equal to
the number of joint actuators. In order to decrease weight,cost and energy consumption
of a manipulator, various approaches have been proposed for controlling a manipulator
which has more degrees of freedom than actuators. However, they require special
mechanisms (e.g. drive chains, drive shafts, transmission mechanisms) in addition to
the basic links and joints. In this paper, an approach to control a manipulator which
has more joints than actuators without additional mechanisms is presented.

The dynamics of a manipulator has non-linear and coupling characteristics. When
each joint 1is controlled by a local linear feedback loop, these factors result in
disturbance. The elimination of such disturbances has been one of the. major problems
in the control of a manipulator [1,2,3,4]. A design theory of a manipulator arm which
has neither non-linearity nor dynamic coupling has also been proposed [51. However,
the force of this disturbance is available to drive a joint which in itself does not
have an actuator. .

Vukobratovié [6,7] proposed algorithmic control, in which the state and generalized
force of the system are partially programmed, and unknown states and unknown
generalized forces are determined by the conditions of dynamic equilibrium. This
method is applied to synthesis of biped gait [6] and biped postural stabilization [7].
In the biped system, the degrees of freedom between foot and ground have no actuators,
and they are controlled indirectly using dynamic coupling with other powered
degrees of freedom. Since the dynamic equilibrium is represented as a second-
order differential equation, a boundary condition is required to determine the state
of the system completely. Vukobratovié used the repeatability condition of the biped
gait as the boundary condition.

This paper describes a method of controlling the position of a manipulator which is
composed of active and passive joints. The active joints have actuators and position
sensors. The passive joints have holding brakes instead of actuators. While the brakes
are released, the passive joints are indirectly controlled by the motion of the active
joints using the coupling characteristics of manipulator dynamics. While the brakes
are engaged, the passive joints are fixed and the active joints are controlled. As the
passive joints can be fixed by brakes, the boundary condition concerned with the
active joints can be determined arbitrarily. The ‘total position of the manipulator is
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controlled by combining these two control modes. The condition that ensures control-
lability of the passive joints while released is obtained. An algorithm for point to
point control of the manipulator is also presented. The feasibility of the method is
demonstrated by simulation experiments of a manipulator with two degrees of freedom.

2. PRINCIPLE OF CONTROL METHOD

Consider a manipulator with n degrees of freedom. We assume that r(r=n/2) degrees
of freedom of the manipulator are active joints with actuators and displacement
sensors, which is a common structure of manipulator joints. The (n-r) degrees of
freedom are passiVe joints which have holding brakes instead of actuators.

When the holding brakes are engaged, the active joints can be controlled without
affecting the state of the passive joints. When the holding brakes are released, the
passive joints can move freely and are controlled indirectly by the coupling force
generated by the motion of the active joints. The position of the manipulator is
controlled by combining these two control modes. ‘

The equation of motion of a manipulator can be written as

"M(@)q t blg.Q) =u , D
where, . . .
b(q.q) = h(q,@ + I'q + gl@)
geR" . 7 : joint displacement u€eR" . generalized force
g(q) €R™ : gravity h(q,q) €R* : Coriolis’'/centrifugal force
M(q) €R**": inertia matrix [ eR*** - viscosity friction matrix

The displacements of r joints, including all the (n-r) passive joints, are selected
from the elements of q and set as a vector ¢ €R" (since T=n/2, r=n-1). All the
remaining (n-r) joints are active and their displacements are represented as ¢ €R"™".
Moreover,the generalized force of the r active joints is expressed as 7 €R". When the
passive joints are free, the generalized force of the passive joints is equal to zero.

The elements of q and u are rearranged as

— ¢ n—r - T, r
4 [qb] us {o]n_r @)
Accordingly, M(q) and b(q,q) are also rearranged and M(q) is partitioned as follows.
'= Mi1(q) Mlz(q)]r
M(q) [le(Q) Mzz(Q) n-r (3)
When (2) and (3) are substituted for (1),
Mis g + Mi2p + [I,  0Ib(q@ - 7 =0 (4a)
Mz:1¢p + Ma2¢p + Lo In_,]b(q,q) =0 (4b).

Mi:, Miz, Mz1, M2z and b(q,q) can be determined if the measured value of joint
displacement and velocity at each joint is substituted in q.q of (4a) and (4b).
Furthermore, when a desired value ( =¢4 ) is assigned to the acceleration ¢, (4b) is
considered as a linear equation with regard to ¢. The coefficient matrix Mz,
corresponds to the dynamic coupling between ¢ and ¢, and it depends wupon the
structure and mass distribution of the manipulator. If Mz: is non-singular, (4b) can
be solved uniquely

b = M1 Moz pa - [0 le_l]b(q,(.l) &)
When (5) is substituted in (4a),
T = M1z — MiiMai7'Mz2) o + [ -M::Mz1"11b(q.@) (6)
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If the generalized force 7 thus derived actuates the actlve joints, acceleration ¢,
¢4 arise.

In other words, while the passive joints are free, the acceleration ¢ of r joints,
including the (n-r) passive joints, can be arbitrarily determined by the generalized
force of the r active joints. The acceleration ¢ of the remaining (n-r) active joints
is determined by ¢« and cannot be adjusted arbitrarily. However, in addition to
acceleration, initial conditions of displacement and velocity are required to
prescribe motion completely. Initial displacement of the passive joints is that of the
moment when the brakes are released. Initial velocity of the passive joints is zero.
Initial displacement and velocity of .the active joints is determined arbitrarily
by controlling them while the passive joints are fixed.

While the passive joints are fixed, their velocity and acceleration are zero. The
displacement, velocity and acceleration of the active joints can be controlled without
affecting the passive joints. By organizing the pattern of the motion by a combination
of these two modes, the total position of a manipulator is controlled.

3. CONTROLLABILITY AND OUTPUT-CONTROLLABILITY

In this chapter, the basis of the proposed method is given from the standpoint of
linear system theory[8]. First of all, we show that the system of a manipulator with
passive joints is generally uncontrollable (in the sense of linear system theory), and
simultaneous positioning of all the joints is impossible. Therefore, holding brakes of
passive joints are necessary.

Secondly, we propose that the joints of the same number as the active joints,
including all the passive joints, are controlled while the passive joints are free.
Therefore the number of the passive joints should be less than or equal to the number
of the active joints. We explain it by showing that the system is output-controllable
if output of the system is assigned to displacement and velocity of the joints of the
same number as the active joints.

3.1 Linear Approx1mat10n Model

At first, the equation of motion of the manipulator is linearized to obtain state
variable representation. Since the inertia matrix M(q) is generally non singular, (1)
is transformed as

q - M(@)"'u + M(q@)"'b(q,q) =0 : - (D

It is assumed that gravitational force and friction of the joints can be ignored. When
(7) is -linearized in the neighborhood of the equilibrium point, the system can be
represented by the following state equation.

Xx=Ax + Bt (8)
0 n—r 6 ¢ n—r
— 0 In n —_ 0 r - 6 (,b T
A - [ 0 0 :‘n B N Nll n—r X = 6 ¢2 n—r
" " 21 r oY
where, r . .
-1 Ni1 (@) le(Q)]n r
M(a) [Nzl(Q) N22(q) ‘ (9)

The state variables 6 ¢,8 ¢,6 &, 6 ¢ consist of a deviation of Jomt displacement
and - velocity from the equilibrium point and the input is the generalized force 7 of
the active joints. (In this case, the number of r and choice of ¢, ¢ is arbitrary, so
it is not necessary for ¢ to include all the passive joints.)

3.2 Controllability
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When the controllability matrix V is calculated in order to investigate the
controllability of system (9),

0 Nyg 0 oo 0
v = (B,AB,A%B, - A0B) = | Ner 0
Ngg 0 0 ooeeee 0

Since rank V=2r<2n, system (9) is uncontrollable. In other words, when the displace-
ments and velocities of n joints are simultaneously controlled with the generalized
force of r (<n) active joints, there exists a domain where the manipulator cannot
reach by any input even in the neighborhood of the equilibrium point.

3.3 Qutput Controllability
Here, output of the system (9) is taken as

y = Cx (11)

_{o¢ {0 I, 0 0

V‘[aq)} C‘[oo 01,]

The displacement and velocity of r joints is output. If the system is output-
controllable, the existence of input 7 which transfers output 6 ¢, & ¢ from
an arbitrary value to zero is ‘guaranteed. The complete condition for output-
controllability of system (9) and (11) is that the rank of matrix N = [CB,CAB,CA®B,---,
CA*~'B] equals 2r.

N = { 0 Nzgy 0 ---oe 0 ] (12)

From (12), the condition of output-controllability is equivalent to non-singularity of
N.:. Hence if Na: is non-singular, it is possible to set ¢ and ¢ at desired values
and to perform local positioning in the neighborhood of the equilibrium point.

[f the number of the active joints r=n-r, we can select the r elements of ¢ so as
to include the (n-r) passive joints. In that case, all the passive joints can be
positioned with the generalized force of the active joints. On the other hand, the
displacement and velocity of joints greater than r is not output-controllable
irrespective of output matrix C since rank of N is less than or equal to 2r.

Furthermore, .it can be proved that this condition agrees with the condition that
M,: is non-singular, under which (4b) has a solution. This means that if and only if
the acceleration of r joints, including (n-r) passive joints, can be arbitrarily
determined by the generalized force of r active joints without linear approximation,
systems (9) and (11) are output-controllable.

4. CONTROL ALGORITHM

In controlling the position of a manipulator, several control algorithms can be
devised according to the way in which the two control modes are combined. As an
example, point to point (PTP) control is considered here.

Since the passive joints are controlled with the brakes released (OFF) and the
active joints are controlled with the brakes engaged (ON), the control mode should be
changed at least one time before all the joints of the manipulator are set at a
desired position. It is considered difficult to control both the passive and active
joints simultaneously to reach the desired position precisely while the passive joints
are free. In the simplest control algorithm sequence, therefore, first the passive
joints are positioned while the passive joints are free, then the remaining active
joints are positioned while the passive joints are fixed: ‘

PTP control is possible with this sequence alone, but to make it even easier, a

(10)
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brakes-ON period is added before brakes-OFF period to provide kinetic energy to the
link mechanism by the active joints so that the passive joints can move easily and
unnecessary motion of the active joints is reduced. Consequently, the period of
positioning is divided into the following three phases.

Phase 1 : ¢ joints are fixed (To=t<T,, brakes ON)
Phase I : ¢ joints are free (T1=t<T., brakes OFF)
Phase M : ¢ joints are fixed (T.=t<T,, brakes ON)

At phase I, r joints, including passive joints, are controlled along a desired
trajectory, and in phases I and I, the remaining (n-r) active joints are controlled
from the initial position to the final position.

First of all, the trajectory and the actuator torque in phase 1 are calculated
off-line as follows (Fig. 1).

@ Desired displacement, velocity and acceleration Gat), Ga(t), ¢gat) (T1=t=Tp)
of r joints, including all the passive joints, are prescribed.
(However, ¢ a(T1)= @a(T2) = 0 is a boundary condition because at the moment of
brakes ON/OFF, the passive joints must be at rest.)

® The initial displacement and velocity of the remaining (n-r) joints & (T:), & (Ty1)
are assigned.

® (5) and (6) are calculated to determine 7 (T:), é(T1).

@ ¢(T,+AT) and ¢ (T1+AT) are determined by numerical integration of @ (t).
However, AT is the sampling interval.

® {® calculation of (5), (6) — @ numerical integration} is repeated and the torque
7. acceleration q , velocity q and displacement q are determined for the whole of
phase II.

The results of these off-line calculations are used for feed-forward compensation.
Moreover, the boundary values of ¢, ¢ between the phases I, M and I are
determined using this result.

When control is executed in real time, the following feedback control is applied.

ba = PatK(da- @) +tEKEQi-¢) (13)
(K., K, : diagonal gain matrix) .

Here 4, (a. and ¢Ha are the desired values of displacement, velocity and
acceleration given in @ and ¢, ¢ are the measured values of displacement and
velocity. Acceleration ¢ha’ obtained in (13) is substituted in ¢4 of (6) and the
torque 7 is determined. In this case, real values for ¢ and ¢ can be obtained by
measurement without numerical integration. From (4a),(5),(6) and (13),

((./}d - (ﬁ) t Kv(q?)d - (/)) t Kp(¢’d - ‘/J) =0 (14)

Therefore, ¢4 ¢ is guaranteed to converge to zero if K, and K, are chosen adequately.
In phases I and I, control of ¢ is similar to an ordinary manipulator. In phase
I, ¢ is controlled from the initial position ¢ (To) to ¢(Ty) and ¢ is controlled
from ¢(To) = zero to $(T:1). In phase I, ¢ is controlled from ¢ (Tz) to final
position ¢(Ts) and ¢ is controlled from ¢ (T2) to ¢ (Ts) = zero.
With the algorithm mentioned above, position of a manipulator can be controlled
between any two points. ‘

5. SIMULATION

In order to confirm the feasibility of the proposed method, control of a two degree
of freedom manipulator (Fig. 2) is considered. The torque of the active joint required
for positioning, positioning time, etc. are evaluated. Specifically, equations (5) and
(6) were expressed as follows. :
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_ Mz2 &+ Dass () @2 (15)

¢ = Ma1 ()
T = Oia()- M—lbj[—;‘%)WDuz(chWDm(gb)cbz— M“(‘{j&?w)(‘“q‘ﬁ (16)

The trajectory of ¢ in phase Il is assigned arbitrarily. The acceleration/
deceleration curve is chosen to follow the sinusoidal function in order to reduce the
required torque of the actuator. The maximum value of | )| are assigned so that the
torque of the .actuator is limited to a certain value. T.-T: is obtained from the
values of ¢ (T1) and ¢ (Tz), and the trajectory of ¢ is assigned. :

The initial values of ¢ and ¢ (¢ (T1), @ (T1)) can be arbitrarily selected. The
trajectory of ¢ is determined by the algorithms @ thru ® 1in Chapter 4, and there-
after ¢ (T2) and ¢ (Tz) is calculated. The acceleration/ deceleration of ¢ along 1
and T also follows the sinusoidal function.

An example of PTP control is illustrated with a stick diagram (Fig.3). Since (15)
and (16) have solutions when Ms:#0, control of the manipulator is possible within the
domain of -2.30< ¢ <2.30. Within the following domain the values of ¢ (To), ¢ (Ta)
are varied by 7 /6 steps, and the maximum positioning time, maximum torque and so on
are evaluated (Table 1). In.this case, the maximum value of | ¢| in 1,1 and that of
| | in I are 4mrad/s?.

$(T)20 , ~7/2=¢(To)=7n/2, 0S¢(T)=n/2, ~1/22¢Ta)=7/2

Within this'dqmain. positioning between any two points is completed within 1.8s,
and the performance required of the actuator and the brake are satisfied with products
that can be easily obtained.

6. CONCLUSION

In this paper, a method has been proposed for controlling the position of a
manipulator which has passive joints comprised of only holding brakes and sensors by
using dynamic coupling. It also describes the basic principles and the conditions
which make control possible. The feasibility of the method is demonstrated by the
simulation of a manipulator with two degrees of freedom. Fundamental experiments are
now being carried out with an experimental manipulator.

Since the proposed method depends on a dynamic model of a manipulator, this
method is more effective when applied in combination with dynamic modelling and
identification methods.

We judged the controllability of a manipulator by the non-singularity of an inertia
matrix only qualitatively. However, it is preferable to represent the ability of
control with quantitative criteria like output-controllability gain[8].

When some joint actuators of a manipulator are exchanged for holding brakes with
the proposed method, weight, energy consumption and cost of the manipulator are
expected to be reduced. We can take advantage of these merits by applying them 'to
simple assembly robots, manipulator redundancy control, etc. Space applications (e.g.
space manipulators, expansion of space structures) are also effective because there is
no influence of gravity. : :

REFERENCES

[11J.Y.S.Luh, M.W.Walker and R.P.Paul, "On Line Computational Scheme for -Mechanical
Manipulators”, Trans. ASME, I. of Dyn.Syst.Mea.Cont., Vol.10Z, No.2, pp.69-76,1980.
[2]K.D.Young, “Controller Design for a Manipulator Using Theory of Variable Structure
Systems”, IEEE Trans. Syst. Man Cybern., SMC-8, No.Z, pp.101-109, 1978.

[3]E. Freund, "Fast Nonlinear Control with Arbitrary Pole-Placement for Industrial
Robots and Manipulators”, Int. J. Robotics Research, Vol.1, No.l, pp.65-78, }982.

— 622 —
20th ISIR



[4IM. Vukobratovié¢ and D.Stoki¢ , "One Engineering Concept of Dynamic Control of
Manipulators”, Trans. ASME, J. of Dyn.Syst.Mea.Cont., Vol.103, No.2, pp.108-118, 1981.
[5]K.Youcef-Toumi and H.Asada, The Design of Open-loop Manipulator Arms with Decoupled
and Configuration-invariant Inertia Tensors”, Proc. of IEEE 1986 Int.Conf. on Robotics
and Automation, pp.2018-2026, 1986.

[6IM. Vukobratovic¢ and D. Jurici¢ ,”Contribution to the synthesys of biped gait”, IEEE
Trans. Biomed.Eng., BME-16, No.l, pp.1-6, 1969.

[7]M.Vukobratovi¢ and D. Stokié¢ ,"Is Dynamic Control Needed in Robotic Systems, and if
So, to What Extent?”, Int. J. Robotics Research, Vol.2, No.2, pp.18-34, 1983.
[8]M.Iwatsuki, M.Kawamata and T.Higuchi, "Performance Evaluation of Robot Arms from
the Viewpoint of Controllability and Observability”, Trans. of SICE, Vol.23, No.2,
pp.149-154,1987. (in Japanese)

START
!

Trajectpry gengyation of ¢
Gat), @a(t), ¢a(t) (Ti<t<T2)

!

Initial value of @, @
¢ (T1), ¢(T1)

t=T1

(L) = Ma17 "Mz ¢'d(t) - [o le_?]b(q.(.l) .
7(t) = M1z - MiiMa17"M22) ¢ a(t) f,[Ir -M:1:M21711b(q,q)

v
G (HHAT) = ¢ (1) +Jf+AT$(c>d(
¢ (t+AT) = ¢ (1) +Jf+AT¢(C)dc
U
t=t+ AT

END

Fig.1 Control Algorithm in Brake-OFF Period
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Joint ‘1 (Actuator)

Fig.2 Two Degrees of Freedom Manipulator

Brake ON : @
Brake OFF : O

(¢, ¢) 0 (0,0) = (n/2,7/3)

Fig.3 Simulated Motion of the Manipulator

Table 1 Simulation Result

Positioning Time

Actuator Torque

Actuator Velocity

Actuator Acceleration

Brake Torque

Ts = 1.78s
| ) | < 2.3N'm
|é| = 2.91ad/s

|é| = 12.6rad/s?

| ‘(¢I = 0.96N-m

— 624 —



